Advertisement
Review article| Volume 86, ISSUE 6, P606-621, December 2012

Hormonal contraception and bone metabolism: a systematic review

      Abstract

      Background

      Although a large amount of studies in the literature evaluated the effects of hormonal contraception on bone, many questions remained still unclear, such as the effect of these therapies on fracture risk.

      Study Design

      We performed a systematic search of the published studies from January 1975 through January 2012 on the effects of hormonal contraceptives on bone metabolism. We analyzed the overall effect on bone mineral density (BMD) and on fracture risk of combined oral contraceptives (COCs), progestogen-only contraceptives, transdermal contraceptives and vaginal ring.

      Results

      COC therapy does not seem to exert any significant effect on BMD in the general population. In adolescents, the effects of COCs on BMD seem to be mainly determined by estrogen dose. The use of COCs in perimenopausal women seems to reduce bone demineralization and may significantly increase BMD even at a 20-mcg dose. Use of depot medroxyprogesterone acetate is associated with a decrease in BMD, although this decrease seems to be partially reversible after discontinuation. Data on other progestogen-only contraceptives, transdermal patch and vaginal ring are still limited, although it seems that these contraceptive methods do not exert any influence on BMD.

      Conclusions

      Hormonal contraceptives do not seem to exert any significant effect on bone in the general population. However, other randomized controlled trials are needed to evaluate the effects on fracture risk since the data available are derived from studies having the effects on BMD as the primary end point, and BMD may not accurately reflect the real fracture risk.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contraception
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fabbri G.
        • Petraglia F.
        • Segre A.
        • et al.
        Reduced spinal bone density in young women with amenorrhoea.
        Eur J Obstet Gynecol Reprod Biol. 1991; 41: 117-122
        • Davies M.C.
        • Hall M.L.
        • Jacobs H.S.
        Bone mineral loss in young women with amenorrhea.
        Br Med J. 1990; 301: 790-793
        • Drinkwater B.L.
        • Brummer B.
        • Chesnut III, C.H.
        Menstrual history as a determinant of current bone density in young athletes.
        J Am Med Assoc. 1990; 263: 545-548
        • ESHRE Capri Workshop Group
        Female contraception over 40.
        Hum Reprod Update. 2009; 15: 599-612
        • Feng X.
        • McDonald J.M.
        Disorders of bone remodeling.
        Annu Rev Pathol. 2011; 6: 121-145
        • Roodman G.D.
        Advances in bone biology: the osteoclast.
        Endocr Rev. 1996; 17: 308-332
        • Boyle W.J.
        • Simonet W.S.
        • Lacey D.L.
        Osteoclast differentiation and activation.
        Nature. 2003; 423: 337-342
        • Boskey A.L.
        Biomineralization: conflicts, challenges, and opportunities.
        J Cell Biochem. 1998; 30–31: 83-91
        • Gallagher J.C.
        • Sai A.J.
        Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis.
        Maturitas. 2010; 65: 301-307
        • Genant H.K.
        • Cann C.E.
        • Ettinger B.
        • Gordan G.S.
        Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy.
        Ann Intern Med. 1982; 97: 699-705
        • Riggs B.L.
        • Khosla S.
        • Melton III, L.J.
        Sex steroids and the construction and conservation of the adult skeleton.
        Endocr Rev. 2002; 23: 279-302
        • Syed F.
        • Khosla S.
        Mechanisms of sex steroid effects on bone.
        Biochem Biophys Res Commun. 2005; 328: 688-696
        • Seifert-Klauss V.
        • Prior J.C.
        Progesterone and bone: actions promoting bone health in women.
        J Osteoporos. 2010; 2010: 845180
        • Eriksen E.F.
        • Colvard D.S.
        • Berg N.J.
        • et al.
        Evidence of estrogen receptors in normal human osteoblast-like cells.
        Science. 1988; 241: 84-86
        • Komm B.S.
        • Terpening C.M.
        • Benz D.J.
        • Graeme K.A.
        • O'Malley B.W.
        • Haussler M.R.
        Estrogen binding receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells.
        Science. 1988; 241: 81-84
        • Davis V.L.
        • Couse J.F.
        • Gray T.K.
        • Korach K.S.
        Correlation between low levels of estrogen receptors and estrogen responsiveness in two rat osteoblast-like cell lines.
        J Bone Miner Res. 1994; 9: 983-991
        • Oursler M.J.
        • Osdoby P.
        • Pyfferoen J.
        • Riggs B.L.
        • Spelsberg T.C.
        Avian osteoclasts as estrogen target cells.
        Proc Natl Acad Sci U S A. 1991; 88: 6613-6666
        • Oursler M.J.
        • Pederson L.
        • Fitzpatrick L.
        • Riggs B.L.
        Human giant cell tumors of the bone (osteoclastomas) are estrogen target cells.
        Proc Natl Acad Sci U S A. 1994; 91: 5227-5231
        • Braidman I.
        • Baris C.
        • Wood L.
        • et al.
        Preliminary evidence for impaired estrogen receptor-α protein expression in osteoblasts and osteocytes from men with idiopathic osteoporosis.
        Bone. 2000; 26: 423-427
        • Bord S.
        • Horner A.
        • Beavan S.
        • Compston J.
        Estrogen receptors α and ß are differentially expressed in developing human bone.
        Endocrinology. 2001; 86: 2309-2314
        • Chen F.P.
        • Wang K.C.
        • Huang J.D.
        Effect of estrogen on the activity and growth of human osteoclasts in vitro.
        Taiwan J Obstet Gynecol. 2009; 48: 350-355
        • Oursler M.J.
        • Pederson L.
        • Pyfferoen J.
        • Osdoby P.
        • Fitzpatrick L.
        • Spelsberg T.C.
        Estrogen modulation of avian osteoclast lysosomal gene expression.
        Endocrinology. 1993; 132: 1373-1380
        • Mano H.
        • Yuasa T.
        • Kameda T.
        • et al.
        Mammalian mature osteoclasts as estrogen target cells.
        Biochem Biophys Res Commun. 1996; 223: 637-642
        • Furuyama N.
        • Fujisawa Y.
        Regulation of collagenolytic cysteine protease synthesis by estrogen in osteoclasts.
        Steroids. 2000; 65: 371-378
        • Parikka V.
        • Lehenkari P.
        • Sassi M.L.
        • et al.
        Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts.
        Endocrinology. 2001; 142: 5371-5378
        • Jilka R.L.
        Cytokines, bone remodeling, and estrogen deficiency: a 1998 update.
        Bone. 1998; 23: 75-81
        • Di Gregorio G.B.
        • Yamamoto M.
        • Ali A.A.
        • et al.
        Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17 beta-estradiol.
        J Clin Invest. 2001; 107: 803-812
        • Krum S.A.
        • Miranda-Carboni G.A.
        • Hauschka P.V.
        • et al.
        Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival.
        EMBO J. 2008; 27: 535-545
        • Kameda T.
        • Mano H.
        • Yuasa T.
        • et al.
        Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts.
        J Exp Med. 1997; 186: 489-495
        • Nakamura T.
        • Imai Y.
        • Matsumoto T.
        • et al.
        Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts.
        Cell. 2007; 130: 811-823
        • Imai Y.
        • Youn M.Y.
        • Kondoh S.
        • et al.
        Estrogens maintain bone mass by regulating expression of genes controlling function and life span in mature osteoclasts.
        Ann N Y Acad Sci. 2009; 1173: E31-E39
        • Anderson M.A.
        • Maraskovsky E.
        • Billingsley W.L.
        • et al.
        A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic cell function.
        Nature. 1997; 390: 175-179
        • Hsu H.
        • Lacey D.L.
        • Dunstan C.R.
        • et al.
        Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand.
        Proc Natl Acad Sci U S A. 1999; 96: 3540-3545
        • Khosla S.
        The OPG/RANKL/RANK system.
        Endocrinology. 2001; 142: 5050-5055
        • Hofbauer L.C.
        • Khosla S.
        • Dunstan C.R.
        • Lacey D.L.
        • Spelsberg T.C.
        • Riggs B.L.
        Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells.
        Endocrinology. 1999; 140: 4367-4370
        • Di Carlo C.
        • Tommaselli G.A.
        • Gargano V.
        • et al.
        Effects of estrogen-progestin therapy on serum levels of RANKL, osteoprotegerin, osteocalcin, leptin, and ghrelin in postmenopausal women.
        Menopause. 2007; 14: 38-44
        • Turner A.S.
        Animal models of osteoporosis — necessity and limitations.
        Eur Cell Mater. 2001; 1: 66-81
        • Kalu D.N.
        The ovariectomized rat model of postmenopausal bone loss.
        Bone Miner. 1991; 15: 175-191
        • Lane N.E.
        • Haupt D.
        • Kimmel D.B.
        • Modin G.
        • Kinney J.H.
        Early estrogen replacement therapy reverses the rapid loss of trabecular bone volume and prevents further deterioration of connectivity in the rat.
        J Bone Miner Res. 1999; 14: 206-214
        • Sims N.A.
        • Clément-Lacroix P.
        • Minet D.
        • et al.
        A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice.
        J Clin Invest. 2003; 111: 1319-1327
        • Manolagas S.C.
        • Jilka R.L.
        Bone marrow, cytokines, and bone remodeling — emerging insights into the pathophysiology of osteoporosis.
        N Engl J Med. 1995; 332: 305-311
        • Pacifici R.
        Cytokines, estrogen, and postmenopausal osteoporosis — the second decade.
        Endocrinology. 1998; 139: 2659-2661
        • Manolagas S.C.
        The role of IL-6 type cytokines and their receptors in bone.
        Ann N Y Acad Sci. 1998; 840: 194-204
        • Lin S.C.
        • Yamate T.
        • Taguchi Y.
        • et al.
        Regulation of the gp80 and gp130 subunits of the IL-6 receptor by sex steroids in the murine bone marrow.
        J Clin Invest. 1997; 100: 1980-1990
        • Miyaura C.
        • Kusano K.
        • Masuzawa T.
        • et al.
        Endogenous bone-resorbing factors in estrogen deficiency: cooperative effects of IL-1 and IL-6.
        J Bone Miner Res. 1995; 10: 1365-1373
        • Sunyer T.
        • Lewis J.
        • Collin-Osdoby P.
        • Osdoby P.
        Estrogen's bone-protective effects may involve differential IL-1 receptor regulation in human osteoclast-like cells.
        J Clin Invest. 1999; 103: 1409-1418
        • Srivastava S.
        • Weitzmann M.N.
        • Cenci S.
        • Ross F.P.
        • Adler S.
        • Pacifici R.
        Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD.
        J Clin Invest. 1999; 104: 503-513
        • Srivastava S.
        • Neale W.M.
        • Kimble R.B.
        • et al.
        Estrogen blocks M-CSF gene expression and osteoclast formation by regulating phosphorylation of egr-1 and its interaction with Sp-1.
        J Clin Invest. 1998; 102: 1850-1859
        • Oursler M.J.
        • Cortese C.
        • Keeting P.E.
        • et al.
        Modulation of transforming growth factor-ß production in normal human osteoblast-like cells by 17ß-estradiol and parathyroid hormone.
        Endocrinology. 1991; 129: 3313-3320
        • Hughes D.E.
        • Dai A.
        • Tiffee J.C.
        • Li H.H.
        • Mundy G.R.
        • Boyce B.F.
        Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-ß.
        Nat Med. 1996; 2: 1132-1136
        • Kim Y.Y.
        • Kim S.H.
        • Oh S.
        • et al.
        Increased fat due to estrogen deficiency induces bone loss by elevating monocyte chemoattractant protein-1 (MCP-1) production.
        Mol Cells. 2010; 29: 277-282
        • Wei L.L.
        • Leach M.W.
        • Miner R.S.
        • Demers L.M.
        Evidence for progesterone receptors in human osteoblast-like cells.
        Biochem Biophys Res Commun. 1993; 195: 525-532
        • Mac Namara P.
        • O'Shaughnessy C.
        • Manduca P.
        • Loughrey H.C.
        Progesterone receptors are expressed in human osteoblast-like cell lines and in primary human osteoblast cultures.
        Calcif Tissue Int. 1995; 57: 436-441
        • Mac Namara P.
        • Loughrey H.C.
        Progesterone receptor A and B isoform expression in human osteoblasts.
        Calcif Tissue Int. 1998; 63: 39-46
        • Pensler J.M.
        • Radosevich J.A.
        • Higbee R.
        • Langman C.B.
        Osteoclasts isolated from membranous bone in children exhibit nuclear estrogen and progesterone receptors.
        J Bone Miner Res. 1990; 5: 797-802
        • Slootweg M.C.
        • Ederveen A.G.
        • Schot L.P.
        • Schoonen W.G.
        • Kloosterboer H.J.
        Oestrogen and progestogen synergistically stimulate human and rat osteoblast proliferation.
        J Endocrinol. 1992; 133: R5-R8
        • Prior J.C.
        Progesterone as a bone-trophic hormone.
        Endocr Rev. 1990; 11: 386-398
        • Kalu D.N.
        • Salerno E.
        • Liu C.C.
        • et al.
        A comparative study of the actions of tamoxifen, estrogen and progesterone in the ovariectomized rat.
        Bone Miner. 1991; 15: 109-123
        • Barengolts E.I.
        • Lathon P.V.
        • Lindh F.G.
        Progesterone antagonist RU486 has bone-sparing effects in ovariectomized rats.
        Bone. 1995; 17: 21-25
        • Rickard D.J.
        • Iwaniec U.T.
        • Evans G.
        • et al.
        Bone growth and turnover in progesterone receptor knockout mice.
        Endocrinology. 2008; 149: 2383-2390
        • Barengolts E.I.
        • Lathon P.V.
        • Lindh F.G.
        Progesterone antagonist RU 486 has bone-sparing effects in ovariectomized rats.
        Bone. 1995; 17: 21-25
        • Abe T.
        • Chow J.W.
        • Lean J.M.
        • Chambers T.J.
        The progesterone antagonist, RU486, does not affect basal or estrogen-stimulated cancellous bone formation in the rat.
        Bone Miner. 1992; 19: 225-233
        • Yao W.
        • Dai W.
        • Shahnazari M.
        • et al.
        Inhibition of the progesterone nuclear receptor during the bone linear growth phase increases peak bone mass in female mice.
        PLoS One. 2010; 5: e11410
        • Practice Committee of American Society for Reproductive Medicine
        Hormonal contraception: recent advances and controversies.
        Fertil Steril. 2008; 90: S103-S113
        • Martins S.L.
        • Curtis K.M.
        • Glasier A.F.
        Combined hormonal contraception and bone health: a systematic review.
        Contraception. 2006; 73: 445-469
        • Lopez L.M.
        • Grimes D.A.
        • Schulz K.F.
        • Curtis K.M.
        Steroidal contraceptives: effect on bone fractures in women.
        Cochrane Database Syst Rev. 2011; 6
        • WHO
        Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group.
        World Health Organ Tech Rep Ser. 1994; 843: 1-129
        • Hui S.L.
        • Slemenda C.W.
        • Johnston Jr., C.C.
        Age and bone mass as predictors of fracture in a prospective study.
        J Clin Invest. 1988; 81: 1804-1809
        • Ross P.D.
        • Wasnich R.D.
        • Vogel J.M.
        Detection of prefracture spinal osteoporosis using bone mineral absorptiometry.
        J Bone Miner Res. 1988; 3: 1-11
        • Cummings S.R.
        • Black D.M.
        • Nevitt M.C.
        • et al.
        Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group.
        JAMA. 1990; 263: 665-668
        • Gärdsell P.
        • Johnell O.
        • Nilsson B.E.
        The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years.
        Calcif Tissue Int. 1991; 49: 90-94
        • Berenson A.B.
        • Radecki C.M.
        • Grady J.J.
        • Rickert V.I.
        • Thomas A.
        A prospective, controlled study of the effects of hormonal contraception on bone mineral density.
        Obstet Gynecol. 2001; 98: 576-582
        • Nappi C.
        • Di Spiezio Sardo A.
        • Acunzo G.
        • et al.
        Effects of a low-dose and ultra-low-dose combined oral contraceptive use on bone turnover and bone mineral density in young fertile women: a prospective controlled randomized study.
        Contraception. 2003; 67: 355-359
        • Nappi C.
        • Di Spiezio Sardo A.
        • Greco E.
        • Tommaselli G.A.
        • Giordano E.
        • Guida M.
        Effects of an oral contraceptive containing drospirenone on bone turnover and bone mineral density.
        Obstet Gynecol. 2005; 105: 53-60
        • Endrikat J.
        • Mih E.
        • Dusterberg B.
        • et al.
        A 3-year double-blind, randomized, controlled study on the influence of two oral contraceptives containing either 20 μg or 30 μg ethinylestradiol in combination with levonorgestrel on bone mineral density.
        Contraception. 2004; 69: 179-187
        • Gargano V.
        • Massaro M.
        • Morra I.
        • Formisano C.
        • Di Carlo C.
        • Nappi C.
        Effects of two low-dose combined oral contraceptives containing drospirenone on bone turnover and bone mineral density in young fertile women: a prospective controlled randomized study.
        Contraception. 2008; 78: 10-15
        • Hartard M.
        • Kleinmond C.
        • Luppa P.
        • et al.
        Comparison of the skeletal effects of the progestogens desogestrel and levonorgestrel in oral contraceptive preparations in young women: controlled, open, partly randomized investigation over 13 cycles.
        Contraception. 2006; 74: 367-375
        • Paoletti A.M.
        • Orru M.
        • Floris S.
        • et al.
        Evidence that treatment with monophasic oral contraceptive formulations containing ethinylestradiol plus gestodene reduces bone resorption in young women.
        Contraception. 2000; 61: 259-263
        • Cooper C.
        • Hannaford P.
        • Croft P.
        • Kay C.R.
        Oral contraceptive pill use and fractures in women: a prospective study.
        Bone. 1993; 14: 41-45
        • Vessey M.
        • Mant J.
        • Painter R.
        Oral contraception and other factors in relation to hospital referral for fracture. Findings in a large cohort study.
        Contraception. 1998; 57: 231-235
        • Barad D.
        • Kooperberg C.
        • Wactawsi-Wende J.
        • Liu J.
        • Hendrix S.
        • Watts N.
        Prior oral contraception and postmenopausal fracture: a Women's Health Initiative observational cohort study.
        Fertil Steril. 2005; 84: 374-383
        • La Vecchia C.
        • Tavani A.
        • Gallus S.
        Oral contraceptives and risk of hip fractures.
        Lancet. 1999; 354: 335-336
        • Michaelsson K.
        • Baron J.A.
        • Farahmand B.Y.
        • Persson I.
        • Ljunghall S.
        Oral contraceptive use and risk of hip fracture: a case-control study.
        Lancet. 1999; 353: 1481-1484
        • Vestergaard P.
        • Rejnmark L.
        • Mosekilde L.
        Oral contraceptive use and risk of fractures.
        Contraception. 2006; 73: 571-576
        • Mallmin H.
        • Ljunghall S.
        • Persson I.
        • Bergström R.
        Risk factors for fractures of the distal forearm: a population-based case-control study.
        Osteoporos Int. 1994; 4: 298-304
        • O'Neill T.W.
        • Marsden D.
        • Adams J.E.
        • Silman A.J.
        Risk factors, falls, and fracture of the distal forearm in Manchester, UK.
        J Epidemiol Community Health. 1996; 50: 288-292
        • O'Neill T.W.
        • Silman A.J.
        • Naves D.M.
        • Cooper C.
        • Kanis J.
        • Felsenberg D.
        Influence of hormonal and reproductive factors on the risk of vertebral deformity in European women. European Vertebral Osteoporosis Study Group.
        Osteoporos Int. 1997; 7: 72-78
        • Johansson C.
        • Mellstrom D.
        An earlier fracture as a risk factor for new fracture and its association with smoking and menopausal age in women.
        Maturitas. 1996; 24: 97-106
        • Berenson A.B.
        • Breitkopf C.R.
        • Grady J.J.
        • Rickert V.I.
        • Thomas A.
        Effects of hormonal contraception on bone mineral density after 24 months of use.
        Obstet Gynecol. 2004; 103: 899-906
        • Cobb K.L.
        • Kelsey J.L.
        • Sidney S.
        • Ettinger B.
        • Lewis C.E.
        Oral contraceptives and bone mineral density in white and black women in CARDIA. Coronary Risk Development in Young Adults.
        Osteoporos Int. 2002; 13: 893-900
        • Mazess R.B.
        • Barden H.S.
        Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth control pills.
        Am J Clin Nutr. 1991; 53: 132-142
        • Paoletti A.M.
        • Orru M.
        • Lello S.
        • et al.
        Short-term variations in bone remodeling markers of an oral contraception formulation containing 3 mcg of drospirenone plus 30 microg of ethinyl estradiol: observational study in young postadolescent women.
        Contraception. 2004; 70: 293-298
        • Castelo-Branco C.
        • Martinez de Osaba M.J.
        • Pons F.
        • Vanrell J.A.
        Effects on bone mass of two oral contraceptives containing ethinylestradiol and cyproterone acetate or desogestrel: results of a 2-year follow-up.
        Eur J Contracept Reprod Health Care. 1998; 3: 79-84
        • Reed S.D.
        • Scholes D.
        • LaCroix A.Z.
        • Ichikawa L.E.
        • Barlow W.E.
        • Ott S.M.
        Longitudinal changes in bone density in relation to oral contraceptive use.
        Contraception. 2003; 68: 177-182
        • Corson S.L.
        Oral contraceptives for the prevention of osteoporosis.
        J Reprod Med. 1993; 38: 1015-1020
        • Kritz-Silverstein D.
        • Barrett-Connor E.
        Bone mineral density in postmenopausal women as determined by prior oral contraceptive use.
        Am J Public Health. 1993; 83: 100-102
        • Cromer B.A.
        Effects of hormonal contraceptives on bone mineral density.
        Drug Saf. 1999; 20: 213-222
        • Kleerekoper M.
        • Brienza R.S.
        • Schultz L.R.
        • Johnson C.C.
        Oral contraceptive use may protect against low bone mass. Henry Ford Hospital Osteoporosis Cooperative Research Group.
        Arch Intern Med. 1991; 151: 1971-1976
        • Gambacciani M.
        • Monteleone P.
        • Ciaponi M.
        • Sacco A.
        • Genazzani A.R.
        Effects of oral contraceptives on bone mineral density.
        Treat Endocrinol. 2004; 3: 191-196
        • Sultana S.
        • Choudhury S.
        • Choudhury S.A.
        Effect of combined oral contraceptives on bone mineral density in pre and postmenopausal women.
        Mymensingh Med J. 2002; 11: 12-14
        • Pasco J.A.
        • Kotowicz M.A.
        • Henry M.J.
        • Panahi S.
        • Seeman E.
        • Nicholson G.C.
        Oral contraceptives and bone mineral density: a population-based study.
        Am J Obstet Gynecol. 2000; 182: 265-269
        • Wei S.
        • Venn A.
        • Ding C.
        • Foley S.
        • Laslett L.
        • Jones G.
        The association between oral contraceptive use, bone mineral density and fractures in women aged 50–80 years.
        Contraception. 2011; 84: 357-362
        • Wanichsetakul P.
        • Kamudhamas A.
        • Watanaruangkovit P.
        • Siripakarn Y.
        • Visutakul P.
        Bone mineral density at various anatomic bone sites in women receiving combined oral contraceptives and depot-medroxyprogesterone acetate for contraception.
        Contraception. 2002; 65: 407-410
        • Allali F.
        • El Mansouri L.
        • Abourazzak F.
        • et al.
        The effect of past use of oral contraceptive on bone mineral density, bone biochemical markers and muscle strength in healthy pre and post menopausal women.
        BMC Womens Health. 2009; 9: 31
        • Afghani A.
        • Abbott A.V.
        • Wiswell R.A.
        • et al.
        Bone mineral density in Hispanic women: role of aerobic capacity, fat-free mass, and adiposity.
        Int J Sports Med. 2004; 25: 384-390
        • Collins C.
        • Thomas K.
        • Harding A.
        • Cook S.
        • Turner J.
        • Collins J.
        The effect of oral contraceptives on lumbar bone density in premenopausal women.
        J La State Med Soc. 1988; 140: 35-39
        • Garnero P.
        • Sornay-Rendu E.
        • Delmas P.D.
        Decreased bone turnover in oral contraceptive users.
        Bone. 1995; 16: 499-503
        • Goldsmith N.
        • Johnston J.
        Bone mineral: effects of oral contraceptives, pregnancy, and lactation.
        J Bone Joint Surg. 1975; 57-A: 657-668
        • Hall M.L.
        • Heavens J.
        • Cullum I.D.
        • Ell P.J.
        The range of bone density in normal British women.
        J Bone Joint Surg. 1990; 63: 266-269
        • Hansen M.A.
        Assessment of age and risk factors on bone density and bone turnover in healthy premenopausal women.
        Osteoporos Int. 1994; 4: 123-128
        • Hartard M.
        • Bottermann P.
        • Bartenstein P.
        • Jeschke D.
        • Schwaiger M.
        Effects on bone mineral density of low-dosed oral contraceptives compared to and combined with physical activity.
        Contraception. 1997; 55: 87-90
        • Hawker G.A.
        • Forsmo S.
        • Cadarette S.M.
        • et al.
        Correlates of forearm bone mineral density in young Norwegian women: the Nord-Trondelag Health Study.
        Am J Epidemiol. 2002; 156: 418-427
        • Hreshchyshyn M.M.
        • Hopkins A.
        • Zylstra S.
        • Anbar M.
        Associations of parity, breast-feeding, and birth control pills with lumbar spine and femoral neck bone densities.
        Am J Obstet Gynecol. 1988; 159: 318-322
        • Kanders B.
        • Lindsay R.
        • Dempster D.
        Determinants of bone mass in young healthy women.
        in: Christiansen C. Arnaud C. Nordin B. Parfitt A. Peck W. Riggs B. Proceedings of the Copenhagen International Symposium on Osteoporosis, Copenhagen. Department of Clinical Chemistry, Glostrup Hospital, Denmark1984: 37-39
        • Laitinen K.
        • Valimaki M.
        • Keto P.
        Bone mineral density measured by dual-energy X-ray absorptiometry in healthy Finnish women.
        Calcif Tissue Int. 1991; 48: 224-231
        • Lloyd T.
        • Buchanan J.R.
        • Ursino G.R.
        • Myers C.
        • Woodward G.
        • Halbert D.R.
        Long-term oral contraceptive use does not affect trabecular bone density.
        Am J Obstet Gynecol. 1989; 160: 402-404
        • MacDougall J.
        • Davies M.C.
        • Overton C.E.
        • et al.
        Bone density in a population of long term oral contraceptive pill users does not differ from that in menstruating women.
        Br J Fam Plann. 1999; 25: 96-100
        • Melton III, L.J.
        • Bryant S.C.
        • Wahner H.W.
        • et al.
        Influence of breastfeeding and other reproductive factors on bone mass later in life.
        Osteoporos Int. 1993; 3: 76-83
        • Murphy S.
        • Khaw K.T.
        • Compston J.E.
        Lack of relationship between hip and spine bone mineral density and oral contraceptive use.
        Eur J Clin Invest. 1993; 23: 108-111
        • Nelson M.
        • Mayer A.B.
        • Rutherford O.
        • Jones D.
        Calcium intake, physical activity and bone mass in pre-menopausal women.
        J Hum Nutr Diet. 1991; 4: 171-178
        • Ott S.M.
        • Scholes D.
        • LaCroix A.Z.
        • Ichikawa L.E.
        • Yoshida C.K.
        • Barlow W.E.
        Effects of contraceptive use on bone biochemical markers in young women.
        J Clin Endocrinol Metab. 2001; 86: 179-185
        • Perrotti M.
        • Bahamondes L.
        • Petta C.
        • Castro S.
        Forearm bone density in long-term users of oral combined contraceptives and depot medroxyprogesterone acetate.
        Fertil Steril. 2001; 76: 469-473
        • Petitti D.B.
        • Piaggio G.
        • Mehta S.
        • Cravioto M.C.
        • Meirik O.
        Steroid hormone contraception and bone mineral density: a cross-sectional study in an international population. The WHO Study of Hormonal Contraception and Bone Health.
        Obstet Gynecol. 2000; 95: 736-744
        • Picard D.
        • Ste-Marie L.G.
        • Coutu D.
        • et al.
        Premenopausal bone mineral content relates to height, weight and calcium intake during early adulthood.
        Bone Miner. 1988; 4: 299-309
        • Prior J.C.
        • Kirkland S.A.
        • Joseph L.
        • et al.
        Oral contraceptive use and bone mineral density in premenopausal women: cross-sectional, population-based data from the Canadian Multicentre Osteoporosis Study.
        CMAJ. 2001; 165: 1023-1029
        • Rodin A.
        • Chapman M.
        • Fogelman I.
        Bone density in users of combined oral contraception. Preliminary reports of a pilot study.
        Br J Fam Plann. 1991; 16: 125-129
        • Sowers M.F.
        • Wallace R.B.
        • Lemke J.H.
        Correlates of forearm bone mass among women during maximal bone mineralization.
        Prev Med. 1985; 14: 585-596
        • Stevenson J.C.
        • Lees B.
        • Devenport M.
        • Cust M.P.
        • Ganger K.F.
        Determinants of bone density in normal women: risk factors for future osteoporosis?.
        Br Med J (Clin Res Ed). 1989; 298: 924-928
        • Tharnprisarn W.
        • Taneepanichskul S.
        Bone mineral density in adolescent and young Thai girls receiving oral contraceptives compared with depot medroxyprogesterone acetate: a cross-sectional study in young Thai women.
        Contraception. 2002; 66: 101-103
        • Ulrich C.M.
        • Georgiou C.C.
        • Snow-Harter C.M.
        • Gillis D.E.
        Bone mineral density in mother–daughter pairs: relations to lifetime exercise, lifetime milk consumption, and calcium supplements.
        Am J Clin Nutr. 1996; 63: 72-79
        • Wallace L.S.
        • Ballard J.E.
        Lifetime physical activity and calcium intake related to bone density in young women.
        J Womens Health Gend Based Med. 2002; 11: 389-398
        • The ESHRE Capri Workshop Group
        Noncontraceptive health benefits of combined oral contraception.
        Hum Reprod Update. 2005; 11: 513-525
        • Hartard M.
        • Kleinmond C.
        • Wiseman M.
        • Weissenbacher E.R.
        • Felsenberg D.
        • Erben R.G.
        Detrimental effect of oral contraceptives on parameters of bone mass and geometry in a cohort of 248 young women.
        Bone. 2007; 40: 444-450
        • Polatti F.
        • Perotti F.
        • Filippa N.
        • Gallina D.
        • Nappi R.E.
        Bone mass and long-term monophasic oral contraceptive treatment in young women.
        Contraception. 1995; 51: 221-224
        • Register T.C.
        • Jayo M.J.
        • Jerome C.P.
        Oral contraceptive treatment inhibits the normal acquisition of bone mineral in skeletally immature young adult female monkeys.
        Osteoporos Int. 1997; 7: 348-353
        • Cromer B.A.
        Bone mineral density in adolescent and young adult women on injectable or oral contraception.
        Curr Opin Obstet Gynecol. 2003; 15: 353-357
        • Lloyd T.
        • Taylor D.S.
        • Lin M.H.
        • Matthews A.E.
        • Eggli D.F.
        • Legro R.S.
        Oral contraceptive use by teenage women does not affect peak bone mass: a longitudinal study.
        Fertil Steril. 2000; 74: 734-738
        • Lattakova M.
        • Borovsky M.
        • Payer J.
        • Killinger Z.
        Oral contraception usage in relation to bone mineral density and bone turnover in adolescent girls.
        Eur J Contracept Reprod Health Care. 2009; 14: 207-214
        • Agostino H.
        • Di Meglio G.J.
        Low-dose oral contraceptives in adolescents: how low can you go?.
        Pediatr Adolesc Gynecol. 2010; 23: 195-201
        • Cromer B.A.
        • Blair J.M.
        • Mahan J.D.
        A prospective comparison of bone density in adolescent girls receiving depot medroxyprogesterone acetate (Depo-Provera), levonorgestrel (Norplant), or oral contraceptives.
        J Pediatr. 1996; 129: 671-676
        • Lara-Torre E.
        • Edwards C.P.
        • Perlman S.
        • Hertweck S.P.
        Bone mineral density in adolescent females using depot medroxyprogesterone acetate.
        J Pediatr Adolesc Gynecol. 2004; 17: 17-21
        • Beksinska M.E.
        • Kleinschmidt I.
        • Smit J.A.
        • Farley T.M.
        Bone mineral density in adolescents using norethisterone enanthate, depot-medroxyprogesterone acetate or combined oral contraceptives for contraception.
        Contraception. 2007; 75: 438-443
        • Cromer B.A.
        • Stager M.
        • Bonny A.
        Depot medroxyprogesterone acetate, oral contraceptives and bone mineral density in a cohort of adolescent girls.
        J Adolesc Health. 2004; 35: 434-441
        • Rome E.
        • Ziegler J.
        • Secic M.
        Bone biochemical markers in adolescent girls using either depot medroxyprogesterone acetate or an oral contraceptive.
        J Pediatr Adolesc Gynecol. 2004; 17: 373-377
        • Cromer B.A.
        • Bonny A.E.
        • Stager M.
        Bone mineral density in adolescent females using injectable or oral contraceptives: a 24-month prospective study.
        Fertil Steril. 2008; 90: 2060-2067
        • Beksinska M.E.
        • Kleinschmidt I.
        • Smit J.A.
        • Farley T.M.
        • Rees H.V.
        Bone mineral density in young women aged 19–24 after 4–5 years of exclusive and mixed use of hormonal contraception.
        Contraception. 2009; 80: 128-132
        • Scholes D.
        • Ichikawa L.
        • La Croix A.Z.
        • et al.
        Oral contraceptive use and bone density in adolescent and young adult women.
        Contraception. 2010; 81: 35-40
        • WHO
        Medical eligibility criteria for contraceptive use. 4th ed. 2009
        • Gambacciani M.
        • Ciaponi M.
        • Cappagli B.
        • Benussi C.
        • Genazzani A.R.
        Longitudinal evaluation of perimenopausal femoral bone loss: effects of a low-dose oral contraceptive preparation on bone mineral density and metabolism.
        Osteoporos Int. 2000; 11: 544-548
        • Gambacciani M.
        • Cappagli B.
        • Ciaponi M.
        • Benussi C.
        • Genazzani A.R.
        Hormone replacement therapy in perimenopause: effect of a low dose oral contraceptive preparation on bone quantitative ultrasound characteristics.
        Menopause. 1999; 6: 43-48
        • Gambacciani M.
        • Spinetti A.
        • Taponeco F.
        • Cappagli B.
        • Piaggesi L.
        • Fioretti P.
        Longitudinal evaluation of perimenopausal vertebral bone loss: effects of a low-dose oral contraceptive preparation on bone mineral density and metabolism.
        Obstet Gynecol. 1994; 83: 392-396
        • Gambacciani M.
        • Spinetti A.
        • Cappagli B.
        • et al.
        Hormone replacement therapy in perimenopausal women with a low dose oral contraceptive preparation: effects on bone mineral density and metabolism.
        Maturitas. 1994; 19: 125-131
        • Volpe A.
        • Amram A.
        • Cagnacci A.
        • Battaglia C.
        Biochemical aspects of hormonal contraception: effects on bone metabolism.
        Eur J Contracept Reprod Health Care. 1997; 2: 123-126
        • Shargil A.A.
        Hormone replacement therapy in perimenopausal women with a triphasic contraceptive compound: a three-year prospective study.
        Int J Fertil. 1985; 30: 15-28
        • Fortney J.A.
        • Feldblum P.J.
        • Talmage R.V.
        • Zhang J.
        • Godwin S.E.
        Bone mineral density and history of oral contraceptive use.
        J Reprod Med. 1994; 39: 105-109
        • Tuppurainen M.
        • Kroger H.
        • Saarikoski S.
        • Honkanen R.
        • Alhava E.
        The effect of previous oral contraceptive use on bone mineral density in perimenopausal women.
        Osteoporos Int. 1994; 4: 93-98
        • Beksinska M.
        • Smit J.
        • Kleinschmidt I.
        • Farley T.
        • Mbatha F.
        Bone mineral density in women aged 40–49 years using depot-medroxyprogesterone acetate, norethisterone enanthate or combined oral contraceptives for contraception.
        Contraception. 2005; 71: 170-175
        • Johnell O.
        • Nilsson B.E.
        Life-style and bone mineral mass in perimenopausal women.
        Calcif Tissue Int. 1984; 36: 354-356
        • Masaryk P.
        • Lunt M.
        • Benevolenskaya L.
        • et al.
        Effects of menstrual history and use of medications on bone mineral density: the EVOS study.
        Calcif Tissue Int. 1998; 63: 271-276
        • Taechakraichana N.
        • Limpaphayom K.
        • Ninlagarn T.
        • Panyakhamlerd K.
        • Chaikittisilpa S.
        • Dusitsin N.
        A randomized trial of oral contraceptive and hormone replacement therapy on bone mineral density and coronary heart disease risk factors in postmenopausal women.
        Obstet Gynecol. 2000; 95: 87-94
        • Grainge M.J.
        • Coupland C.A.C.
        • Cliffe S.J.
        • Chilvers C.E.D.
        • Hosking D.J.
        Reproductive, menstrual and menopausal factors: which are associated with bone mineral density in early postmenopausal women?.
        Osteoporos Int. 2001; 12: 777-787
        • Enzelsberger H.
        • Metka M.
        • Heytmanek G.
        • Schurz B.
        • Kurz C.
        • Kusztrich M.
        Influence of oral contraceptive use on bone density in climacteric women.
        Maturitas. 1988; 9: 375-378
        • Kuohung W.
        • Borgatta L.
        • Stubblefield P.
        Low-dose oral contraceptives and bone mineral density: an evidence-based analysis.
        Contraception. 2000; 61: 77-82
        • Gambacciani M.
        • Cappagli B.
        • Lazzarini V.
        • Ciaponi M.
        • Fruzzetti F.
        • Genazzani A.R.
        Longitudinal evaluation of perimenopausal bone loss: effects of different low dose oral contraceptive preparations on bone mineral density.
        Maturitas. 2006; 54: 176-180
        • Albertazzi P.
        • Bottazzi M.
        • Steel S.A.
        Bone mineral density and depot medroxyprogesterone acetate.
        Contraception. 2006; 73: 577-583
        • Clark M.K.
        • Sowers M.R.
        • Nichols S.
        • Levy B.
        Bone mineral density changes over two years in first-time users of depot medroxyprogesterone acetate.
        Fertil Steril. 2004; 82: 1580-1586
        • Curtis K.M.
        • Martins S.L.
        Progestogen-only contraception and bone density: a systematic review.
        Contraception. 2006; 73: 470-487
        • Cundy T.
        • Cornish J.
        • Roberts H.
        • Elder H.
        • Reid I.R.
        Spinal bone density in women using depot medroxyprogesterone contraception.
        Obstet Gynecol. 1998; 92: 569-573
        • Cundy T.
        • Evans M.
        • Roberts H.
        • Wattie D.
        • Ames R.
        • Reid I.R.
        Bone density in women receiving depot medroxyprogesterone acetate for contraception.
        BMJ. 1991; 303: 13-16
        • Kaunitz A.M.
        • Miller P.D.
        • Rice V.M.
        • Ross D.
        • McClung M.R.
        Bone mineral density in women aged 25–35 years receiving depot medroxyprogesterone acetate: recovery following discontinuation.
        Contraception. 2006; 74: 90-99
        • Viola A.S.
        • Castro S.
        • Bahamondes M.V.
        • Fernandes A.
        • Viola C.F.
        • Bahamondes L.
        A cross-sectional study of the forearm bone mineral density in long-term current users of the injectable contraceptive depot medroxyprogesterone acetate.
        Contraception. 2011; 84: e31-e37
        • Scholes D.
        • LaCroix A.Z.
        • Ott S.M.
        • Ichikawa L.E.
        • Barlow W.E.
        Bone mineral density in women using depot medroxyprogesterone acetate for contraception.
        Obstet Gynecol. 1999; 93: 233-238
        • Harel Z.
        • Johnson C.C.
        • Gold M.A.
        • et al.
        Recovery of bone mineral density in adolescents following the use of depot medroxyprogesterone acetate contraceptive injections.
        Contraception. 2010; 81: 281-291
        • Cundy T.
        • Cornish J.
        • Evans M.C.
        • Roberts H.
        • Reid I.R.
        Recovery of bone density in women who stop using medroxyprogesterone acetate.
        BMJ. 1994; 308: 247-248
        • Orr-Walker B.J.
        • Evans M.C.
        • Ames R.W.
        • Clearwater J.M.
        • Cundy T.
        • Reid I.R.
        The effect of past use of the injectable contraceptive depot medroxyprogesterone acetate on bone mineral density in normal postmenopausal women.
        Clin Endocrinol (Oxf). 1998; 49: 615-618
        • Scholes D.
        • LaCroix A.Z.
        • Ichikawa L.E.
        • Barlow W.E.
        • Ott S.M.
        Injectable hormone contraception and bone density: results from a prospective study.
        Epidemiology. 2002; 13: 581-587
        • Gai L.
        • Zhang J.
        • Zhang H.
        • Gai P.
        • Zhou L.
        • Liu Y.
        The effect of depot medroxyprogesterone acetate (DMPA) on bone mineral density (BMD) and evaluating changes in BMD after discontinuation of DMPA in Chinese women of reproductive age.
        Contraception. 2011; 83: 218-222
        • Viola A.S.
        • Castro S.
        • Marchi N.M.
        • Bahamondes M.V.
        • Viola C.F.
        • Bahamondes L.
        Long-term assessment of forearm bone mineral density in postmenopausal former users of depot medroxyprogesterone acetate.
        Contraception. 2011; 84: 122-127
        • Meier C.
        • Brauchli Y.B.
        • Jick S.S.
        • Kraenzlin M.E.
        • Meier C.R.
        Use of depot medroxyprogesterone acetate and fracture risk.
        J Clin Endocrinol Metab. 2010; 95: 4909-4916
        • Naessen T.
        • Olsson S.E.
        • Gudmundson J.
        Differential effects on bone density of progestogen-only methods for contraception in premenopausal women.
        Contraception. 1995; 52: 35-39
        • Taneepanichskul S.
        • Intaraprasert S.
        • Theppisai U.
        • Chaturachinda K.
        Bone mineral density during long-term treatment with Norplant implants and depot medroxyprogesterone acetate. A cross-sectional study of Thai women.
        Contraception. 1997; 56: 153-155
        • Intaraprasert S.
        • Taneepanichskul S.
        • Theppisai U.
        • Chaturachinda K.
        Bone density in women receiving Norplant implants for contraception.
        J Med Assoc Thai. 1997; 80: 738-741
        • Bahamondes L.
        • Monteiro-Dantas C.
        • Espejo-Arce X.
        • et al.
        A prospective study of the forearm bone density of users of etonorgestrel- and levonorgestrel-releasing contraceptive implants.
        Hum Reprod. 2006; 21: 466-470
        • Meckstroth K.R.
        • Darney P.D.
        Implant contraception.
        Semin Reprod Med. 2001; 19: 339-354
        • Horowitz M.
        • Wishart J.M.
        • Need A.G.
        • Morris H.A.
        • Nordin B.E.
        Effects of norethisterone on bone related biochemical variables and forearm bone mineral in post-menopausal osteoporosis.
        Clin Endocrinol (Oxf). 1993; 39: 649-655
        • Beerthuizen R.
        • van Beek A.
        • Massai R.
        • Mäkäräinen L.
        • Hout J.
        • Bennink H.C.
        Bone mineral density during long-term use of the progestagen contraceptive implant Implanon compared to a non-hormonal method of contraception.
        Hum Reprod. 2000; 15: 118-122
        • Pongsatha S.
        • Ekmahachai M.
        • Suntornlimsiri N.
        • Morakote N.
        • Chaovisitsaree S.
        Bone mineral density in women using the subdermal contraceptive implant Implanon for at least 2 years.
        Int J Gynaecol Obstet. 2010; 109: 223-225
      1. WHO statement on hormonal contraception and bone health.
        Wkly Epidemiol Rec. 2005;
        • Bahamondes M.V.
        • Monteiro I.
        • Castro S.
        • Espejo-Arce X.
        • Bahamondes L.
        Prospective study of the forearm bone mineral density of long-term users of the levonorgestrel-releasing intrauterine system.
        Hum Reprod. 2010; 25: 1158-1164
        • Massaro M.
        • Di Carlo C.
        • Gargano V.
        • Formisano C.
        • Bifulco G.
        • Nappi C.
        Effects of the contraceptive patch and the vaginal ring on bone metabolism and bone mineral density: a prospective, controlled, randomized study.
        Contraception. 2010; 81: 209-214
        • Massai R.
        • Mäkäräinen L.
        • Kuukankorpi A.
        • Klipping C.
        • Duijkers I.
        • Dieben T.
        The combined contraceptive vaginal ring and bone mineral density in healthy pre-menopausal women.
        Hum Reprod. 2005; 20: 2764-2768
        • Harel Z.
        • Riggs S.
        • Vaz R.
        • Flanagan P.
        • Harel D.
        • Machan J.T.J.
        Bone accretion in adolescents using the combined estrogen and progestin transdermal contraceptive method Ortho Evra: a pilot study.
        Pediatr Adolesc Gynecol. 2010; 23: 23-31