Advertisement
Original research article| Volume 95, ISSUE 4, P405-413, April 2017

Effects of combined oral contraceptives, depot medroxyprogesterone acetate and the levonorgestrel-releasing intrauterine system on the vaginal microbiome

      Abstract

      Objectives

      Prior studies suggest that the composition of the vaginal microbiome may positively or negatively affect susceptibility to sexually transmitted infections (STIs) and bacterial vaginosis (BV). Some female hormonal contraceptive methods also appear to positively or negatively influence STI transmission and BV. Therefore, changes in the vaginal microbiome that are associated with different contraceptive methods may explain, in part, effects on STI transmission and BV.

      Study design

      We performed a retrospective study of 16S rRNA gene survey data of vaginal samples from a subset of participants from the Human Vaginal Microbiome Project at Virginia Commonwealth University. The subset included 682 women who reported using a single form of birth control that was condoms, combined oral contraceptives (COCs), depot medroxyprogesterone acetate (DMPA) or the levonorgestrel-releasing intrauterine system (LNG-IUS).

      Results

      Women using COCs [adjusted odds ratio (aOR) 0.29, 95% confidence interval (CI) 0.13–0.64] and DMPA (aOR 0.34, 95% CI 0.13–0.89), but not LNG-IUS (aOR 1.55, 95% CI 0.72–3.35), were less likely to be colonized by BV-associated bacteria relative to women who used condoms. Women using COCs (aOR 1.94, 95% CI 1.25–3.02) were more likely to be colonized by beneficial H2O2-producing Lactobacillus species compared with women using condoms, while women using DMPA (aOR 1.09, 95% CI 0.63–1.86) and LNG-IUS (aOR 0.74, 95% CI 0.48–1.15) were not.

      Conclusions

      Use of COCs is significantly associated with increased vaginal colonization by healthy lactobacilli and reduced BV-associated taxa.

      Implications

      COC use may positively influence gynecologic health through an increase in healthy lactobacilli and a decrease in BV-associated bacterial taxa.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contraception
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nardini P.
        • Ñahui Palomino R.A.
        • Parolin C.
        • Laghi L.
        • Foschi C.
        • Cevenini R.
        • et al.
        Lactobacillus crispatus inhibits the infectivity of chlamydia trachomatis elementary bodies, in vitro study.
        Sci Rep. 2016; 6: 29024https://doi.org/10.1038/srep29024
        • Breshears L.M.
        • Edwards V.L.
        • Ravel J.
        • Peterson M.L.
        Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model.
        BMC Microbiol. 2015; 15: 276https://doi.org/10.1186/s12866-015-0608-0
        • Nunn K.L.
        • Wang Y.-Y.
        • Harit D.
        • Humphrys M.S.
        • Ma B.
        • Cone R.
        • et al.
        Enhanced trapping of HIV-1 by human cervicovaginal mucus is associated with Lactobacillus crispatus-dominant microbiota.
        mBio. 2015; 6: e01015-e01084https://doi.org/10.1128/mBio.01084-15
        • O'Hanlon D.E.
        • Moench T.R.
        • Cone R.A.
        Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.
        PLoS One. 2013; 8e80074https://doi.org/10.1371/journal.pone.0080074
        • O'Hanlon D.E.
        • Moench T.R.
        • Cone R.A.
        In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide.
        BMC Infect Dis. 2011; 11: 200https://doi.org/10.1186/1471-2334-11-200
        • Hillier S.L.
        • Krohn M.A.
        • Rabe L.K.
        • Klebanoff S.J.
        • Eschenbach D.A.
        The normal vaginal flora, H2O2-producing lactobacilli, and bacterial vaginosis in pregnant women.
        Clin Infect Dis Off Publ Infect Dis Soc Am. 1993; 16: S273-S281
        • Eschenbach D.A.
        • Davick P.R.
        • Williams B.L.
        • Klebanoff S.J.
        • Young-Smith K.
        • Critchlow C.M.
        • et al.
        Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis.
        J Clin Microbiol. 1989; 27: 251-256
        • Myer L.
        • Denny L.
        • Telerant R.
        • de Souza M.
        • Wright T.C.
        • Kuhn L.
        Bacterial vaginosis and susceptibility to HIV infection in south African women: a nested case–control study.
        J Infect Dis. 2005; 192: 1372-1380https://doi.org/10.1086/462427
        • Myer L.
        • Kuhn L.
        • Stein Z.A.
        • Wright T.C.
        • Denny L.
        Intravaginal practices, bacterial vaginosis, and women's susceptibility to HIV infection: epidemiological evidence and biological mechanisms.
        Lancet Infect Dis. 2005; 5: 786-794https://doi.org/10.1016/S1473-3099(05)70298-X
        • Cohn J.A.
        • Hashemi F.B.
        • Camarca M.
        • Kong F.
        • Xu J.
        • Beckner S.K.
        • et al.
        HIV-inducing factor in cervicovaginal secretions is associated with bacterial vaginosis in HIV-1-infected women.
        J Acquir Immune Defic Syndr. 2005; 39: 340-346
        • Martin H.L.
        • Richardson B.A.
        • Nyange P.M.
        • Lavreys L.
        • Hillier S.L.
        • Chohan B.
        • et al.
        Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition.
        J Infect Dis. 1999; 180: 1863-1868https://doi.org/10.1086/315127
        • Aldunate M.
        • Srbinovski D.
        • Hearps A.C.
        • Latham C.F.
        • Ramsland P.A.
        • Gugasyan R.
        • et al.
        Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis.
        Front Physiol. 2015; 6: 164https://doi.org/10.3389/fphys.2015.00164
        • Olmsted S.S.
        • Meyn L.A.
        • Rohan L.C.
        • Hillier S.L.
        Glycosidase and proteinase activity of anaerobic gram-negative bacteria isolated from women with bacterial vaginosis.
        Sex Transm Dis. 2003; 30: 257-261
        • van de Wijgert J.H.H.M.
        • Morrison C.S.
        • Cornelisse P.G.A.
        • Munjoma M.
        • Moncada J.
        • Awio P.
        • et al.
        Bacterial vaginosis and vaginal yeast, but not vaginal cleansing, increase HIV-1 acquisition in African women.
        J Acquir Immune Defic Syndr. 2008; 48: 203-210https://doi.org/10.1097/QAI.0b013e3181743936
        • Sha B.E.
        • Zariffard M.R.
        • Wang Q.J.
        • Chen H.Y.
        • Bremer J.
        • Cohen M.H.
        • et al.
        Female genital-tract HIV load correlates inversely with lactobacillus species but positively with bacterial vaginosis and mycoplasma hominis.
        J Infect Dis. 2005; 191: 25-32https://doi.org/10.1086/426394
        • Ayre W.B.
        The glycogen-estrogen relationship in the vaginal tract.
        J Clin Endocrinol Metab. 1951; 11: 103-110https://doi.org/10.1210/jcem-11-1-103
        • Spear G.T.
        • French A.L.
        • Gilbert D.
        • Zariffard M.R.
        • Mirmonsef P.
        • Sullivan T.H.
        • et al.
        Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by lactobacillus.
        J Infect Dis. 2014; 210: 1019-1028https://doi.org/10.1093/infdis/jiu231
        • Bradshaw C.S.
        • Walker J.
        • Fairley C.K.
        • Chen M.Y.
        • Tabrizi S.N.
        • Donovan B.
        • et al.
        Prevalent and incident bacterial vaginosis are associated with sexual and contraceptive behaviours in young Australian women.
        PLoS One. 2013; 8e57688https://doi.org/10.1371/journal.pone.0057688
        • Bradshaw C.S.
        • Vodstrcil L.A.
        • Hocking J.S.
        • Law M.
        • Pirotta M.
        • Garland S.M.
        • et al.
        Recurrence of bacterial vaginosis is significantly associated with posttreatment sexual activities and hormonal contraceptive use.
        Clin Infect Dis Off Publ Infect Dis Soc Am. 2013; 56: 777-786https://doi.org/10.1093/cid/cis1030
        • Vodstrcil L.A.
        • Hocking J.S.
        • Law M.
        • Walker S.
        • Tabrizi S.N.
        • Fairley C.K.
        • et al.
        Hormonal contraception is associated with a reduced risk of bacterial vaginosis: a systematic review and meta-analysis.
        PLoS One. 2013; 8e73055https://doi.org/10.1371/journal.pone.0073055
        • Jacobson J.C.
        • Turok D.K.
        • Dermish A.I.
        • Nygaard I.E.
        • Settles M.L.
        Vaginal microbiome changes with levonorgestrel intrauterine system placement.
        Contraception. 2014; 90: 130-135https://doi.org/10.1016/j.contraception.2014.04.006
        • Hashway S.A.
        • Bergin I.L.
        • Bassis C.M.
        • Uchihashi M.
        • Schmidt K.C.
        • Young V.B.
        • et al.
        Impact of a hormone-releasing intrauterine system on the vaginal microbiome: a prospective baboon model.
        J Med Primatol. 2014; 43: 89-99https://doi.org/10.1111/jmp.12090
        • van de Wijgert J.H.H.M.
        • Verwijs M.C.
        • Turner A.N.
        • Morrison C.S.
        Hormonal contraception decreases bacterial vaginosis but oral contraception may increase candidiasis: implications for HIV transmission.
        AIDS Lond Engl. 2013; 27: 2141-2153https://doi.org/10.1097/QAD.0b013e32836290b6
        • Borgdorff H.
        • Verwijs M.C.
        • Wit F.W.N.M.
        • Tsivtsivadze E.
        • Ndayisaba G.F.
        • Verhelst R.
        • et al.
        The impact of hormonal contraception and pregnancy on sexually transmitted infections and on cervicovaginal microbiota in african sex workers.
        Sex Transm Dis. 2015; 42: 143-152https://doi.org/10.1097/OLQ.0000000000000245
        • Mitchell C.M.
        • McLemore L.
        • Westerberg K.
        • Astronomo R.
        • Smythe K.
        • Gardella C.
        • et al.
        Long-term effect of depot medroxyprogesterone acetate on vaginal microbiota, epithelial thickness and HIV target cells.
        J Infect Dis. 2014; 210: 651-655https://doi.org/10.1093/infdis/jiu176
        • Amsel R.
        • Totten P.A.
        • Spiegel C.A.
        • Chen K.C.
        • Eschenbach D.
        • Holmes K.K.
        Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations.
        Am J Med. 1983; 74: 14-22
        • Fettweis J.M.
        • Alves J.P.
        • Borzelleca J.F.
        • Brooks J.P.
        • Friedline C.J.
        • Gao Y.
        • et al.
        The vaginal microbiome: disease, genetics and the environment.
        Nat Preced. 2011; https://doi.org/10.1038/npre.2011.5150.2
        • Fettweis J.M.
        • Serrano M.G.
        • Sheth N.U.
        • Mayer C.M.
        • Glascock A.L.
        • Brooks J.P.
        • et al.
        Species-level classification of the vaginal microbiome.
        BMC Genomics. 2012; 13: S17https://doi.org/10.1186/1471–2164-13-S8-S17
        • Wang Q.
        • Garrity G.M.
        • Tiedje J.M.
        • Cole J.R.
        Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.
        Appl Environ Microbiol. 2007; 73: 5261-5267https://doi.org/10.1128/AEM.00062-07
      1. ggplot2 — elegant graphics for data analysis | Hadley Wickham | springer n.d. http://www.springer.com/us/book/9780387981413 [accessed July 13, 2016].

        • Segata N.
        • Izard J.
        • Waldron L.
        • Gevers D.
        • Miropolsky L.
        • Garrett W.S.
        • et al.
        Metagenomic biomarker discovery and explanation.
        Genome Biol. 2011; 12: R60https://doi.org/10.1186/gb-2011-12-6-r60
        • Brotman R.M.
        Vaginal microbiome and sexually transmitted infections: an epidemiologic perspective.
        J Clin Invest. 2011; 121: 4610-4617https://doi.org/10.1172/JCI57172
        • Fredricks D.N.
        • Fiedler T.L.
        • Marrazzo J.M.
        Molecular identification of bacteria associated with bacterial vaginosis.
        N Engl J Med. 2005; 353: 1899-1911https://doi.org/10.1056/NEJMoa043802
        • Huang B.
        • Fettweis J.M.
        • Brooks J.P.
        • Jefferson K.K.
        • Buck G.A.
        The changing landscape of the vaginal microbiome.
        Clin Lab Med. 2014; 34: 747-761https://doi.org/10.1016/j.cll.2014.08.006
        • Romero R.
        • Hassan S.S.
        • Gajer P.
        • Tarca A.L.
        • Fadrosh D.W.
        • Nikita L.
        • et al.
        The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women.
        Microbiome. 2014; 2: 4https://doi.org/10.1186/2049-2618-2-4
        • Ravel J.
        • Gajer P.
        • Abdo Z.
        • Schneider G.M.
        • Koenig S.S.K.
        • McCulle S.L.
        • et al.
        Vaginal microbiome of reproductive-age women.
        Proc Natl Acad Sci U S A. 2011; 108: 4680-4687https://doi.org/10.1073/pnas.1002611107
        • Tamrakar R.
        • Yamada T.
        • Furuta I.
        • Cho K.
        • Morikawa M.
        • Yamada H.
        • et al.
        Association between lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women.
        BMC Infect Dis. 2007; 7: 128https://doi.org/10.1186/1471-2334-7-128
        • Gajer P.
        • Brotman R.M.
        • Bai G.
        • Sakamoto J.
        • Schütte U.M.E.
        • Zhong X.
        • et al.
        Temporal dynamics of the human vaginal microbiota.
        Sci Transl Med. 2012; 4: 132ra52https://doi.org/10.1126/scitranslmed.3003605
        • Rifkin S.B.
        • Smith M.R.
        • Brotman R.M.
        • Gindi R.M.
        • Erbelding E.J.
        Hormonal contraception and risk of bacterial vaginosis diagnosis in an observational study of women attending STD clinics in Baltimore, MD.
        Contraception. 2009; 80: 63-67https://doi.org/10.1016/j.contraception.2009.01.008
        • Roxby A.C.
        • Fredricks D.N.
        • Odem-Davis K.
        • Ásbjörnsdóttir K.
        • Masese L.
        • Fiedler T.L.
        • et al.
        Changes in vaginal microbiota and immune mediators in HIV-1-seronegative Kenyan women initiating depot medroxyprogesterone acetate.
        J Acquir Immune Defic Syndr. 2016; 71: 359-366https://doi.org/10.1097/QAI.0000000000000866
        • Pettifor A.
        • Delany S.
        • Kleinschmidt I.
        • Miller W.C.
        • Atashili J.
        • Rees H.
        Use of injectable progestin contraception and risk of STI among South African women.
        Contraception. 2009; 80: 555-560https://doi.org/10.1016/j.contraception.2009.06.007
        • Riggs M.
        • Klebanoff M.
        • Nansel T.
        • Zhang J.
        • Schwebke J.
        • Andrews W.
        Longitudinal association between hormonal contraceptives and bacterial vaginosis in women of reproductive age.
        Sex Transm Dis. 2007; 34: 954-959
        • Cohen J.
        Vaginal microbiome affects HIV risk.
        Science. 2016; 353: 331https://doi.org/10.1126/science.353.6297.331